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Abstract

In this paper, we propose a stereo matching algorithm
based on multiscale binary feature. Contrary to state-of-
the-art methods that utilize convolutional neural networks
(CNN) for matching, our binary feature is hand-craft. A
major benefit of our method is that our binary feature can
be computed using very simple arithmetic operations, and
the disparity map can be estimated in a very fast manner
by using Hamming Distance to evaluate the matching cost.
In our experiments, we carefully analyze the effectiveness
of major components of our method. Results on the KITTI
2015 stereo benchmark show that our method is compara-
ble to some state-of-the-art CNN based methods.

1. Introduction

Stereo matching is a fundamental task in computer vi-
sion. Its goal is to estimate a disparity map given a pair of
rectified images. Recent advances in stereo matching are
all based on convolutional neural networks. Representative
works include [29, 5, 6, 3, 16, 17, 22].

While the CNN-based methods produce good results in
stereo matching, they are computationally expensive which
prohibit their usage in practice especially for applications
that require real-time feedback such as autonomous driv-
ing [4]. Another limitation of CNN-based methods is that
the trained network may overfit to training data. For ex-
ample, DispNet [17] directly learns the disparity map given
a pair of stereo images. When the baseline of the stereo
pairs change, the trained network needs to be retrained or
finetuned in order to produce correct results. However, it
is very common that the baseline of stereo pairs changes
across platforms, and the corresponding training data may
not always be available.

In this paper, we present a novel and practical stereo
matching algorithm based on multi-scale binary features.
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Our binary feature is designed to achieve two major goals.
First, the developed binary features need to be general and
robust enough in order to adapt to different challenging sce-
narios. Second, the developed binary features need to be
simple enough in order to achieve fast computation. Af-
ter deep analyses of the effectiveness of different local bi-
nary feature descriptors, we found that the BRIEF fea-
ture [2] best fits in our scenario. The BRIEF feature is cho-
sen because it has the minimum computation costs among
BRIEF [2], ORBS[19], BRISK [14] and FREAK [!] fea-
tures. It is also highly robust to illumination variations and
camera parameter changes across the left and right images
of stereo pairs since the BRIEF feature only computes the
relative intensity between two points in the same image, and
the local image structure is binary encoded. However, the
BRIEF feature does not generalize well in regions with thin
objects or smooth area. Therefore, we extend the BRIEF
feature to match the disparity across multi-scale. The multi-
scale strategy also speeds up the matching process by avoid-
ing the comparisons that are far from the correct disparity.
Following previous works in stereo matching, our method
also includes a series of post-processing steps including
left-right consistency check and weighted least squares fil-
tering to improve the accuracy of our disparity maps.

2. Related work

The stereo matching problem has been studied for
decades with rich literature. A compete review is beyond
the scope of this paper. Therefore, only the representative
works are reviewed in this section.

The stereo matching problem consists of two major com-
ponents: matching cost calculation, and spatial cost aggre-
gation [21]. In matching cost calculation, common mea-
surements include sum of squared difference (SSD), sum
of absolute difference (SAD), zero mean normalized cross
correlation(ZNCC), and robust square difference [20]. In
some cases, not only the intensity information is used for



matching cost calculation, but also the image gradient and
other high level statistices are used for matching cost calcu-
lation. A survey which evaluates the performance of differ-
ent cost function for stereo matching is presented in [10].
In recent deep learning based methods, Zbontar and Yann
[29] propose to use a convolutional neural network to learn
the matching cost of two patches, and have demonstrated
outstanding performance compared with conventional mea-
surement methods. Follow-up methods such as Displets [5],
Ensemble method [6], Embedding model [3], Content-
CNN [16] and PBCP [22] consider different network archi-
tectures and have demonstrated better performance than the
work by Zbontar and Yann.

In spatial cost aggregation, traditional methods formu-
late this problem as an energy minimization problem, where
the data cost is the matching cost, and the neighboring cost
is the spatial smoothness of disparity label. The energy
minimization problem can be solved using superpixel/non-
local aggregation [13, 27], dynamic programming [ 1], be-
lief propagation [24], graph-cut [12], guided filtering [7],
and semi-global block matching [9]. Some recent meth-
ods [26, 22] also include a confidence map in the spatial
aggregation process. The confidence map evaluates the
confidence of matching cost computation, while the occlu-
sion map and left-right consistency check can also be in-
cluded in the energy minimization framework of cost ag-
gregation [18, 28]. A survey which evaluates the per-
formance of different cost aggregation methods can be
found in [25]. The aforementioned deep learning meth-
ods [29, 5, 6, 3, 16, 22] also include spatial aggregation as
their post-processing methods.

3. Stereo Matching by BRIEF feature

In this section, we first review the BRIEF feature. Then,
we describe our BRIEF stereo algorithm, followed by im-
plementation details about post-processing methods.

3.1. Review of BRIEF

The BRIEF (Binary Robust Independent Elementary
Features) [2] has been widely used as a feature point de-
scriptor for image matching. Compared with other feature
point descriptors, the BRIEF feature offers a major advan-
tage in terms of speed. Not only is the feature itself very
efficient to compute, but the descriptor similarity can also
be evaluated using the Hamming distance, which is very
efficient compared with the L1-norm/L2-norm distances.
BRIEF feature is also highly discriminative even though it
uses relatively few bits to represent local image patches.

BRIEF feature extracts the local image structure of a
patch by first sampling a lot of random point pairs as illus-
trated in Figure 1. Each line segment in Figure | represents
a pair of random sampled points. For each pair of random

Figure 1. BRIEF descriptor generated by Gaussian Distribution.
As reported in [2], random sampling which follows the Gaussian
distribution, with the zero mean located at the patch center has the
highest discriminative power.

points, a 1-bit descriptor is computed as follows:

.o JL i I(x—p) <I(y-p)
T(pix,y) = {0, otherwise} M

where {x,y} are the sampled random point pair, p is the
center pixel coordinate of a patch, and 7 denotes the 1-bit
descriptor.

The BRIEF descriptor combines k£ number of 1-bit de-
scriptor, and form a k4-dimensional bitstring defined as

fra@) =D 27 (pixi,y,)) 2)

1<i<kq

In practice, a BRIEF descriptor with 128 bits is sufficient
to represent the local structure of a patch, and gaussian blur
is applied beforehand to the image patch to make it more
robust to noise.

In order to compare the similarity between two patches,
the same set of random point pairs is used to compute the
BRIEF descriptor of the two patches. The similarity of two
BRIEF descriptors are then measured by the Hamming Dis-
tance between two binary bit strings. Hamming Distance
is a very fast method to measure distance because it can be
done with a simple bitwise XOR operation followed by a
bit count.

As demonstrated in many image matching applications,
BRIEF descriptor is robust to intensity variation across the
images under comparison. This is because BRIEF descrip-
tor only compares the relative intensity between two points
in the same image. Also, the extracted BRIEF descriptor
is robust to image contrast as the gradient magnitude is not
encoded. While BRIEF descriptor offers many advantages,
it is sensitive when matching two patches in different scale
or with different rotation. However, considering the appli-
cation in matching rectified stereo image pairs, any concern
about rotation and scale variation across patches is elimi-
nated.



Figure 2. From Top to bottom: Input left image, winner-take-all single-scale depthmap, and winner-take-all multi-scale depthmap.

3.2. BRIEF Stereo
3.2.1 Single-scale Disparity Matching

Assuming the stereo image pair has already been rectified,
the matching cost of pixels only needs to be computed along
the horizontal axis. To apply it in the stereo matching prob-
lem, we use the BRIEF descriptor to characterize the local
patches in the left and the right image, and compute the
matching cost using the Hamming Distance. Unlike other
models such as MC-CNN which require extensive train-
ing to learn to extract appropriate features and compute the
matching cost, BRIEF feature does not require any training
and can be computed very quickly.

We first evaluate the performance of BRIEF descrip-
tor in stereo matching by applying the winner-take-all ap-
proach. In our implementation, we sample the BRIEF fea-
tures within a 15x15 local window, and set the length of the
bitstring k4 equal to 128, and the maximum disparity d,,q,
equal to 255 for the KITTI dataset. In our implementation,
we compute the BRIEF feature map sequentially in CPU.
However, it can easily be computed in parallel in GPU us-
ing the frame buffer since it only involves shift operation
and pixelwise comparisons.

For all possible disparity d (0 < d < 255), the matching
cost for a pixel located at position p can be computed as:

C(p,d) = Du(B"(p), B%(p — d)). 3)

where Dy denotes the hamming distance operation, and
BT, BE denote the BRIEF feature map of the left and right
image respectively.

Figure 2 shows the computed depthmap using the
winner-take-all approach. The depthmap is quite accurate in

most areas especially for high-textured regions. However, it
is also very noisy, and the estimated disparities are incorrect
for occluded regions and regions with homogeneous color.

3.2.2 Multi-scale Disparity Matching

From single-scale results, we can see that computing the
matching cost for all possible disparity values is not only
time-consuming but also leads to large disparity errors in
occluded regions. Erroneous results may also occur in re-
gions where the building/object structure is repeated or tex-
ture is monotone (i.e. the BRIEF feature is not effective in
such regions). To overcome these limitations, we extend the
single-scale approach to a multi-scale approach.

We resize the input stereo pair into 4 different resolutions
using Gaussian pyramid. The scale difference between two
consecutive layer is 2. At each resolution, we iteratively ex-
tract BRIEF feature maps, compute the matching cost and
generate a depthmap. Note that the patch size for comput-
ing the BRIEF feature across different resolution is identi-
cal. Thus, the BRIEF feature maps are extracted at multiple
scales. At the end of each depthmap computation, we apply
post-processing to refine the depthmap before passing it to
the next layer. Post-processing methods will be discussed in
the later section. The overall process of multi-scale BRIEF
model is shown in Figure 3.

The BRIEF disparity computation in each layer is de-
fined as follows:

Dy(p) = argminC'(p, d), )
d

d— [0, dmaa /7] if 1=0
 [2Di1=1(p) — 0,2D;_1(p) + o] otherwise
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Figure 3. Architecture of Multi-scale BRIEF method

where d,,q; 1s the maximum possible disparity, [ is index
of layer, n is number of layers, and ¢ is a hyperparameter.
Thus, except for the lowest resolution layer, e.g. [ = 0, we
only need to search the disparity range from 2D;_1(p) — o
to 2D;_1(p) + o. In our implementation, we set o = 4.

In order to solve the problem of matching texture-less
regions, we compute a confidence map to evaluate the relia-
bility of matching bit-strings. In particular, for a k4 dimen-
sional bit-string, it is the most confident when the patch is
highly structured. This can be evaluated by counting total
number of set bits, e.g. > 7 = 1, that is close to k4/2. The
confidence map Con f(p) at position p is computed as:

(Is — ka/2])?

dmaz

Conf(p) =1- ®)
where s is the total number of set bits in B;(p). Figure 4
shows examples of our confidence map. If the confidence
map at the current layer is higher than the previous layer, we
expand the disparity search range. That is, for a confidence
map Con f;(p) at position p in layer [,

c=2x0 if(Confi(p) >=Confii(p)). (6

By increasing the search range for confident regions, we
have a higher chance in matching the correct disparity for
small scale objects which has low confidence at low reso-
lution but high confidence at high resolution. In contrast,
large homogeneous area can be matched correctly at lower
resolution, and a smaller search region for inconfident re-

gions would allow the reliable matching at lower resolution
to be propagated to higher resolution.

Figure 2 shows comparisons between the single scale ap-
proach and the multi-scale approach. As discussed, the dis-
parity in regions around the occlusions, and texture-less re-
gions (center of the road) are inaccurate. However, such
error estimation is greatly improved with the multi-scale
method. Note that the results presented in Figure 2 does
not include any post-processing to be described in the next
sub-section.

3.3. Post-Processing

Using post-processing to refine the initial disparity map
is a common pipeline to boost the qualitative performance
of stereo matching algorithms. Among common post-
processing methods, the MRF based methods, such as belief
propagation or graph cut can produce quite decent results,
even with very simple SAD/SSD measurements in the cost
volume. However, these optimization based methods are
computationally expensive. Since developing a fast stereo
matching algorithm is the primary goal of our paper, we dis-
cuss our method for depth map refinement that only utilizes
tools which are well-known to be fast.

For each level of our results in the multi-scale method,
we apply 5 x 5 median filter to remove specks of noise from
our estimation. As discussed in [23], the secret of success in
the multi-scale method for optical flow estimation is inter-
mediate median filtering before upsampling. Note that the
median filter or weighted median filter has a very efficient
implementation as described in [30].

In the upsampling process, instead of using bicubic up-
sampling, we found that using guided filter [8] with the in-
put image at the next level as the guided image to upsample
the disparity map can better preserve the disparity disconti-
nuities. Similar to median filter, the guided filter has a very
fast implementation as described in [7].

In our implementation, we have also performed the left-
right consistency check. The left-right consistency check is
an effective method to compute occluded regions. In each
layer, we compute the left and right disparity map, and iden-
tify pixels where the left disparity value do not agree with
the corresponding pixel in the right disparity map. Using
the left-right consistency check, we can identify pixels that
require hole filling. Similar to the upsampling process, the
hole filling process can be implemented using guided filter
with very fast implementation [15].

We notice that sampling BRIEF features within a 15 x 15
local window may not capture very well the structure of thin
objects. To overcome this limitation, in the last layer of our
multi-scale method, we additionally sample BRIEF features
within 7 x 7 local window. Note that although we sample
the BRIEF features in a smaller local window, the sampled
pattern are identical to the one used in the 15 x 15 local win-



Figure 4. Confidence map at the last layer. Our confidence map is accurate in identifying texture-less regions, and its computation is also

very fast.

Figure 5. Depthmap results without (left) and with (right) the small window BRIEF feature sampling at the last layer.

Time Single-scale Multi-scale
Feature map Extraction 4.5s 2.22s
Disparity Computation 30 s 1.2s
Post-Processing 1.5s 0.3s
Total 36s 3.72s
Table 1. Comparison of Runtime
Error D1-bg Dl-fg D1-all
All/AIl 7.04% 1872% 8.99 %
All/Est  7.04% 1871 % 8.98 %
Noc/All 650% 1749% 831 %
Noc/Est 650% 1749% 831 %

Table 2. KITTI 2015 Test set Results

dow. This way, we can compare the confidence map across
levels, and we only update the disparity of small objects
only when it has higher confidence than the confidence in
the previous level. Figure 5 compares our results with and
without the small window BRIEF feature sampling. With
the additional small window sampling of BRIEF feature,
the thin structures are better estimated.

4. Experimental Results

We test the performance of our method on the KITTI
2015 stereo dataset. The dataset contains 200 training
scenes and 200 test scenes. Each scene has a pair of stereo
image with resolution 375 x 1242, and the disparity level
ranges from 0 to 255. To provide a quantitative evaluation,
the dataset contains ground truth disparity map captured by
a laserscanner. Because the ground truth disparity maps are
captured at different locations from the stereo camera, the
ground truth disparity maps contain considerable amount of
holes, and the evaluation is only carried out on the valid
pixels of the ground truth disparity maps.

Our method is implemented in CPU without any parallel
processing. We tested it on a Intel(R) Core(TM) i7-6700K
CPU @ 4.00GHz machine and it takes approximately 3.72
seconds for our method to compute a single depthmap im-
age. When including the left-right consistency check, the
running time is doubled because we need to estimate both
the left and the right disparity map simultaneously. Ta-
ble 1 provides a detailed analysis of our runtime. The run-
time comparison between our single-scale and multi-scale



method is also provided. In our current implementation, the
BRIEF feature map computation is the bottleneck of our
multi-scale method. However, as discussed in previous sec-
tion, the computation time of feature map extraction can be
significantly accelerated using GPU/multi-core parallel im-
plementation.

Our quantitative results on the KITTI 2015 dataset are
provided in Table 2. The “D1-bg/fg” represents the percent-
age of stereo disparity outliers in background/foreground
regions, “All” represents all ground truth pixels, and “Noc”
represents non-occluded regions of ground truth pixels. Our
method estimates a dense disparity map, and has 0.5%
lower error rate when excluding occluded regions.

Figure 6 and Figure 7 show some of our results and er-
ror images for qualitative evaluation. The blue areas in the
error maps represent correct regions with error values less
than 3 pixels. When looking at the result images, we can
see that there are still errors in detecting thin objects and
occluded regions. However, considering the autonomous
driving application, fast runtime is far more important than
the minor errors shown in our examples. It is worth noting
that the amount of accurate area of our disparity maps is al-
ready over 85%, and such accuracy is already sufficient for
real-world applications.

5. Conclusion

In this paper, we have presented a fast and robust method
to estimate disparity map using BRIEF features and the
multi-scale approach. The BRIEF feature map extraction
and matching cost computation can be easily implemented
with simple bit-wise operations. Because of its simplicity,
we believe it can be accelerated drastically when imple-
mented with parallel computation. The BRIEF descriptor
uses a small number of bits to effectively represent an im-
age patch, and our multi-scale approach saves further com-
putation time by reducing the number of disparity values
to be computed. Furthermore, our method does not require
any training beforehand, and therefore can be applied in any
disparity map computation tasks even when the dataset is
not available. These advantages are useful in many indus-
trial applications, including but not limited to autonomous
vehicles.
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